Probing T-Branes

Jonathan J. Heckman

hep-th/1006.5459 w/ C. Vafa

hep-th/1009.0017 w/ Y. Tachikawa, C. Vafa and B. Wecht

hep-th/1010.5780 w/S. Cecotti, C. Cordova and C. Vafa

Plan of the Talk

Motivation

 \bullet \cap 7-Branes and T-Branes

Probing T-Branes with D3-Branes

Conclusions

Motivation

A common theme in string theory is:

- Geometry leads to novel field theories
- Probe theories useful to study geometry

This set of questions is of intrinsic interest

Also relevant for stringy model building

F-theory

An example of this type is F-theory

Access to string theory with $\tau_{IIB} \sim O(1)$

Specify (in part) via Weierstrass model:

$$y^2 = x^3 + f(z_i)x + g(z_i)$$

7-Branes where $\Delta = 4f^3 + 27g^2 = 0$

Geometric Formulation

$$F / CY_4 \Rightarrow 4D \mathcal{N} = 1 SUSY$$

7-Brane Gauge Theory

7-brane wrapping $\mathbb{R}^{7,1} \Rightarrow 8D$ SYM

Gauge gp dictated by F-theory Geometry

$$y^2 = x^3 + z^5 \Rightarrow E_8$$
 gauge gp.

Examples:

$$y^2 = x^3 + z^4 \Rightarrow E_6$$
 gauge gp.

7-brane at
$$(z=0)$$

∩ 7-Branes and Fenomenology

In model building applications, the details of \cap 's strongly determine the phenomenology

 \Rightarrow 1 heavy gen.

 \Rightarrow Need to know class of possible \cap 's

 \Rightarrow 2 or more heavy gens.

The Main Idea

However, 8D SYM has more to it than just the F-theory geometry

Physical ambiguities in Weierstrass model

In this talk study using:

- 8D SYM
- probe D3-branes

Probing ∩ 7-Branes I

Question: What does a D3-brane see?

Probing ∩ 7-Branes II

Details of 7-Brane ∩'s determine D3 probe theory

D3 probes of such \cap 's can lead to:

- Additional info. on candidate 7-Brane ∩'s
- New non-Lagrangian $\mathcal{N} = 1$ SCFTs
- Source of novel extra sectors

Model Building?

E-type ∩'s also of relevance for GUT models

Beasley JJH Vafa '08, Donagi Wijnholt '08, Hayashi et al. '08

D3-Branes = novel extra sector

Roadmap

Motivation

 \bullet \cap 7-Branes and T-Branes

Basic Picture

Tilting via breaking pattern $G_{\text{parent}} \to G \times G_{\perp}$:

\cap 7-Branes

Katz Vafa '96 Beasley JJH Vafa '08 Donagi Wijnholt '08

Local \cap 's of 7-Branes from 8D SYM on $\mathbb{R}^{3,1} \times S$

$$A_{(0,1)} = \text{gauge field}$$

 $\Phi_{(2,0)}$ in adjoint of G_{parent}

.....

$$F^{(0,2)} = F^{(2,0)} = \overline{\partial}_A \Phi = 0$$

EOMs on S:

$$\omega \wedge F_{(1,1)} - \frac{i}{2} \left[\Phi, \Phi^{\dagger} \right] = 0$$

Tilting 7-Branes

Position of 7-Branes dictated by $\Phi \in ad(G_{\mathbb{C}})$

Breaking Patterns

In this talk focus on $G_{\perp} = SU(n)$

Tilting specified by $\Phi(Z_1, Z_2)$ an $n \times n$ matrix

Heuristically: Eigen $(\Phi) = 7$ -Brane Positions

Note: Eigen (Φ) has Z_i dependence

Monodromy

Generically, Eigen (Φ) has branch cuts e.g. "monodromy"

$$\Phi^n + b_1(Z_1, Z_2)\Phi^{n-1} + \dots + b_n(Z_1, Z_2) = 0$$

Example: $\Phi^2 - Z_1 = 0$

Model Building Example

Hayashi et al. '09; Cecotti Cordova JJH Vafa '10

Unfolding
$$E_6 \to SU(5) \times SU(2) \times U(1)$$

$$\Phi = \# \left[egin{array}{ccc} Z_1 & & & & \\ & -Z_1 & & & \\ & & -Z_1 \end{array}
ight] \oplus Z_2 \qquad \Phi = \# \left[egin{array}{ccc} & 1 & \\ Z_1 & & \\ & & \end{array}
ight] \oplus Z_2$$

 \Rightarrow 2 or more heavy gens.

$$\Phi = \# \left[egin{array}{cc} & 1 \ Z_1 & \end{array}
ight] \oplus Z_2$$

 \Rightarrow 1 heavy gen.

Unfolding E_8

Eigenvalues($\Phi(Z_1, Z_2)$) = 7-Brane "Positions"

$$E_8 \to SU(5)_{GUT} \times SU(5)_{\perp} \qquad \Phi \in \operatorname{ad}(\operatorname{SU}(5)_{\perp})$$

$$b_0\Phi^5+b_2(Z_1,Z_2)\Phi^3+\cdots+b_5(Z_1,Z_2)=0$$
Hayashi et al. '09
Donagi Wijnholt '09

$$y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$
valid in a local patch

Specifying The Holomorphic Data

$$y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$

Just specifying b_i does not fix physical theory

 Φ is a matrix, b_i just five invariants

Ambiguity?

$$y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$

$$y^2 = x^3 + b_0 z^5$$

iii Φ = 0 versus Φ nilpotent???

$T-Branes \qquad \begin{array}{c} \text{Cecotti, Cordova, JJH, Vafa '10} \\ \text{see also Katz Donagi Sharpe '03} \end{array}$

T-Branes: Φ which is nilpotent at some (Z_1, Z_2) e.g. looks "upper triangular"

Constant part of Φ can be put in Jordan form:

$$\Phi^{(0)} = \begin{bmatrix} \lambda_1^{(1)} & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \lambda_{N_1}^{(1)} \end{bmatrix} \oplus \dots \oplus \begin{bmatrix} \lambda_1^{(a)} & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \lambda_{N_a}^{(a)} \end{bmatrix}$$

In a T-brane, $\lambda_i^{(k)} = 0$

Roadmap

 \bullet \cap 7-Branes and T-Branes

Probing T-Branes with D3-Branes

D3-Brane Probe

D3 probe of \cap E-type 7-Branes leads to

Strongly coupled $\mathcal{N} = 1$ theory

Can view as $\mathcal{N} = 2 \to \mathcal{N} = 1$ deformation

Plan for remainder of talk:

- Review $\mathcal{N} = 2$ case
- Study $\mathcal{N} = 1$ deformations

Warmup: $\mathcal{N} = 2$ Probes

D3-brane probing parallel stack of 7-branes

Banks Douglas Seiberg '96, Douglas Lowe Schwarz '96, ...

7-brane gauge group = G_{flavor}

3-7 string composite operators $\mathcal{O}_{\mathrm{adj}}$

(analogue at weak coupling: $\mathcal{O} \sim Q\widetilde{Q}$)

$\mathcal{N}=2$ Moduli Space

Coulomb Branch:

Move D3-brane off of 7-brane

$$\langle Z \rangle \neq 0$$

Higgs Branch:

Operators \mathcal{O} adj. of G_{flavor}

Dissolve D3-brane as flux

$$\langle \mathcal{O} \rangle \neq 0$$

$$\mathcal{N} = 2 \text{ SCFTs}$$

Specific F-th singularities \Rightarrow constant τ

Sen '96, Banks Douglas Seiberg '96, Dasgupta Mukhi '96,...

D3-probe = strongly coupled $\mathcal{N} = 2$ SCFT

	H_0	H_1	H_2	D_4	E_6	E_7	E_8	
$\Delta(Z)$	6 5	$\frac{4}{3}$	$\frac{3}{2}$	2	3	4	6	_

"Argyres-Douglas"

"Minahan-Nemeschansky"

Example: SO(8) probe

D3 probe of SO(8) 7-Brane:

Field Content: SU(2) SYM $\oplus \varphi \oplus 4 \times (Q_i \oplus \widetilde{Q}_i)$ $W_{\mathcal{N}=2} = \sum_{i=1}^{i=4} Q_i \cdot \varphi \cdot \widetilde{Q}_i$

Coul branch: $z = \langle \text{Tr} \varphi^2 \rangle$ Higgs branch: $\langle QQ' \rangle$

$\mathcal{N}=2$ Curve for SO(8) probe

$$y^2 = x^3 + xz^2 + Az^3$$

Sen '96, Banks Douglas Seiberg '96

Seiberg-Witten Curve = F-theory Geometry!

$\mathcal{N}=2$ E_n Probes

Minahan-Nemeschansky: Introduce $\mathcal{N}=2$ SCFT

Minahan Nemeschansky '96

$$E_8: y^2 = x^3 + z^5$$

Seiberg-Witten Curves: $E_7: y^2 = x^3 + xz^3$

$$E_7: y^2 = x^3 + xz^3$$

$$E_6: y^2 = x^3 + z^4$$

$$\mathcal{N} = 2 \text{ D3-probe} = \text{MN}_{\mathcal{N}=2} \oplus (Z_1 \oplus Z_2)$$

 $\bullet \tau \sim O(1)$ on Coulomb Branch

Some properties:

$$\begin{array}{c|ccccc}
E_6 & E_7 & E_8 \\
\bullet \Delta(Z) & 3 & 4 & 6
\end{array}$$

$\mathcal{N}=2$ Deformations

Deformations: $\delta \mathcal{L} = \int d^2\theta \operatorname{Tr}_{E_n}(\Phi \cdot \mathcal{O}_{adj}) + \text{h.c.}$

 Φ constant and $[\Phi, \Phi^{\dagger}] = 0$

Probing an E-point

$$\mathcal{N} = 2 \text{ SCFT}$$

$$\mathcal{N} = 1 \text{ Deform}^n$$

$$\mathcal{N}=2 \rightarrow \mathcal{N}=1$$

$$\delta \mathcal{L} = \int d^2\theta \operatorname{Tr}_{E_n}(\Phi(Z_1, Z_2) \cdot \mathcal{O}_{adj}) + \text{h.c.}$$

JJH Vafa '10 (see also Aharony Kachru Silverstein '96)

T-Brane
$$\Rightarrow [\Phi, \Phi^{\dagger}] \neq 0$$

In T-brane $\Phi^{(0)} = \text{sum of nilp. Jordan Blocks}$

$$\Phi^{(0)} = 0$$
: Flows back to $\mathcal{N} = 2$ theory Follows from Green et al. '10

$$\Phi^{(0)} \neq 0$$
: Can flow to new $\mathcal{N} = 1$ SCFTs

JJH Tachikawa Vafa Wecht '10

Nilpotent Deformations

Recall: T-Brane has $\Phi(Z_i = 0)$ nilpotent

Even Φ constant and nilpotent is interesting

$$y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$

 $b_i = \text{Casimirs of } \Phi \Rightarrow \text{F-th geometry stays put:}$

$$y^2 = x^3 + b_0 z^5$$

But: Probe theory changes! $\delta W = \text{Tr}_{E_n}(\Phi \cdot \mathcal{O}_{\text{adj}}) \neq 0$

IR R-Symmetry

If a CFT, we can determine some details of IR

By computing IR R-symmetry:

$$R_{IR} = R_{UV} + \sum t_I R_I$$
 $\checkmark \cdots U(1)$ flavor symmetries

Maximize over
$$a(t_I) = \frac{3}{32} [3TrR_{IR}^3 - TrR_{IR}]$$
Intriligator Wecht '03

Note: Just need anomalies

Example: SO(8) probe

JJH Tachikawa Vafa Wecht '10

$$Tr(\Phi \cdot O) = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} 0 & m_{1\overline{2}} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \widetilde{Q}_{\overline{1}} \\ \widetilde{Q}_{\overline{2}} \end{bmatrix}$$

$$W = \sum_{1 \le i \le 4} Q_i \cdot \varphi \cdot \widetilde{Q}_i + m_{1\overline{2}} Q_1 \widetilde{Q}_{\overline{2}}$$

$$W_{eff} = \sum_{3 \le i \le 4} Q_i \cdot \varphi \cdot \widetilde{Q}_i - \frac{Q_2 \varphi^2 \widetilde{Q}_{\overline{1}}}{m_{1\overline{2}}}$$

 $\Delta_{IR}(Z) \sim 1.5$ (Determine via a-maximization)

Non-Lagrangian Case

$$\mathcal{N} = 2 \to \mathcal{N} = 1 \text{ via } \delta W = Tr_{E_n} \left(\Phi \cdot O \right)$$

Even though non-Lagrangian in UV and IR

- We know the flavor symmetries (assume no accidental U(1)'s)
- We know anomalies in $\mathcal{N} = 2$ UV theory
- \Rightarrow We can still fix R_{IR}

UV Symmetries

$$U(1)_R^{\mathcal{N}=2} \times SU(2)_R$$
:

$$\bullet \ R_{UV}^{\mathcal{N}=1} = \frac{1}{3} R_{UV}^{\mathcal{N}=2} + \frac{4}{3} I_3$$

•
$$J_{\mathcal{N}=2} = R_{UV}^{\mathcal{N}=2} - 2I_3$$

Rotations of Z_i :

• J_i (neglect in nilp. case)

Cartan of E_n :

•
$$J = \bigoplus_{j} \operatorname{diag}(j, ..., -j)$$

 $j = \frac{n-1}{2}$ for $n \times n$ nilp. block of Φ

IR R-Symmetry

$$R(t) = R_{UV} + (\frac{t}{2} - \frac{1}{3})J_{\mathcal{N}=2} - tJ + \mu_1(t)J_1 + \mu_2(t)J_2$$
set by details of $\Phi(Z_1, Z_2)$

$$a(t) = \frac{3}{32}(3R(t)^3 - R(t))$$

- $R(t)^3 = \text{sum of UV cubic anomalies}$
- R(t) = sum of UV linear anomalies

Anomaly Matching

Even though non-Lagrangian in UV

We know anomalies of $\mathcal{N}=2$ theory

Ganor et al. '97, Argyres Seiberg '07, Aharony Tachikawa '07, Argyres Wittig '08

$$a_{UV} = \frac{3}{32} [3TrR_{UV}^3 - TrR_{UV}] = \frac{3}{4} \Delta_{UV}(Z) - \frac{1}{2}$$

$$c_{UV} = \frac{1}{32} [9TrR_{UV}^3 - 5TrR_{UV}] = \Delta_{UV}(Z) - \frac{3}{4}$$

$$k_{UV} = -\frac{1}{6} [TrR_{UV}J^{flav}J^{flav}] = 2\Delta_{UV}(Z)$$

 $\Rightarrow {
m Enough \ to \ determine} \ R_{IR}$ JJH, Tachikawa, Vafa, Wecht '10

Nilpotent Families

$$\Phi^{(n)} = \begin{bmatrix} 0 & m_{1\overline{2}} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & m_{n\overline{n-1}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \in SU(n) \subset SU(9) \subset E_8$$

Coarse-Grained T-Branes

Making Φ depend on $Z_i \Rightarrow$ field dep. mass terms

Most Details wash out in IR

$$\Phi^{UV} = \begin{bmatrix} f_{1\overline{1}}(Z_i) & m_{1\overline{2}} & 0 & 0 \\ f_{2\overline{1}}(Z_i) & f_{2\overline{2}}(Z_i) & \dots & 0 \\ \dots & \dots & \dots & m_{n\overline{n-1}} \\ f_{n\overline{1}}(Z_i) & \dots & \dots & f_{n\overline{n}}(Z_i) \end{bmatrix} \qquad \qquad \bigoplus_{\substack{\bigcirc \\ \ddots \\ \bigcirc \\ \smile}} \qquad \qquad \bigcirc$$

$$\Phi^C = \begin{bmatrix} 0 & m_{1\overline{2}} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ \alpha Z_2 & 0 & 0 & m_{n\overline{n-1}} \\ Z_1 & \beta Z_2 & 0 & 0 \end{bmatrix}$$

same IR fixed point

Roadmap

Probing T-Branes with D3-Branes

• Future Directions / Conclusions

Model Building?

View ∩ 7-Branes as Standard Model sector

D3-Branes = novel extra sector

Visible Sector Couplings

∃ CFT states charged under SM gauge group

 \Rightarrow CFT must be broken at scale $M_{CFT} > M_{\text{weak}}$

Coupling to matter: $\int d^2\theta \ \Psi_R \mathcal{O}_{R^*}$

Also couples to gauge fields

 $irrat^l # of "particles"$

 \sim two to six $5 \oplus \overline{5}$'s

Applications?

Phenomenology looks quite rich (and unexplored)

As an inflaton?

SUSY? Dark Matter?

Collider Signatures?

In Progress: JJH Rey; JJH Vafa Wecht

Conclusions

• T-Branes: Generalization of \cap 7-Branes

• D3-probes of T-branes \Rightarrow novel $\mathcal{N} = 1$ SCFTs

• Broad class of $\mathcal{N}=2\to\mathcal{N}=1$ deformations

• ¿Model building with D3-branes?